Advertisements

Effect of Acrylic Polymer Dispersions on Water Vapour Permeability and Some Other Physical Properties of Finished Leathers

Effect of Acrylic Polymer Dispersions on Water Vapour Permeability and Some Other Physical Properties of Finished Leathers

Advertisements

Effect of Acrylic Polymer Dispersions on Water Vapour Permeability and Some Other Physical Properties of Finished Leathers 

 

Quick Navigation for Final Year Undergraduates, Masters (Thesis), and Ph.D. Dissertation Students Who Need Our Services on Their Research Works

Advertisements
Find More Project TopicsFIND HERE
Hire Us for Thesis WorksHIRE NOW
Hire Us for Project WorksHIRE NOW
Hire Us for Seminar WorksHIRE NOW
Hire Us for AssignmentsHIRE NOW
Hire Us for ProposalsHIRE NOW
Contact  UsHERE NOW

 

DOWNLOAD FULL PDF WORK

 

Abstract on Effect of Acrylic Polymer Dispersions on Water Vapour Permeability and Some Other Physical Properties of Finished Leathers 

The effect of acrylic polymer dispersions on the water vapour permeability and some other properties of finished leathers have been studied. An acrylic based commercial binder AE 558 Nycil has been characterized and its effect when applied in a finish formulation on some of the physical properties of originally retanned leathers was investigated. The binder was found to have an intrinsic viscosity of 227 dL/g, and a viscosity molecular weight (Mv) of 4.03×105. This was obtained by conducting a solution viscosity measurement of the solid polymer in toluene at 25 oC. The melting temperature of the solid binder has been found to be in the range 361.7 oC – 370 oC. The results of these physical properties suggest that this is a very high molecular weight polymer with high thermal stability. Formulations for leather finishing was prepared containing the binder at varied proportions of 125 g, 150 g, 175 g, 200 g and 250 g and was applied on the leather substrates corresponding to samples A1, A2, A3, A4, and A5 respectively. Tests on some of the physical properties of these coated samples were conducted. The water vapour permeability of the originally retanned (uncoated) leathers was reduced significantly after the finish was applied. A1 has the lowest permeability at 125 g of the binder in the formulation, while A5 has the highest permeability at 250 g of the binder in the formulation. Generally, the water vapour permeability of the coated leathers increases as the factor varied in this experiment was increased. A3 had the highest Shore A value at 175 g of the binder in the formulation while A5 has the lowest Shore A value at 250 g of the binder in the formulation. Distension and Bursting strength of the uncoated leathers was improved after the leathers were coated. However, there was no particular trend in effect as the quantity of the binder in the finish formulation increased. The fastness of the coated samples generally increased as the quantity of the binder in the finish formulations was increased with sample A5 having the best resistance to wet rub action.

 

DOWNLOAD FULL PDF WORK

Disclaimer

This research material is intended for academic use only and should be used as a guide in constructing your research project and seminar presentation. You should never duplicate the content word for word (verbatim), as SCHOOLTHESIS.COM will not be held liable for anyone who does.

The purpose of publishing this material is to alleviate the stress of hopping from one school library to the next in search of research materials. This service is lawful because all educational institutions allow students to read past projects, papers, books, and articles while working on their own.

SCHOOL THESIS is merely giving this information as a research reference. Use the document as a reference or structure for your own research paper. This paper’s content should be able to assist you in coming up with new ideas and thoughts for your own study

Effect of Acrylic Polymer Dispersions on Water Vapour Permeability and Some Other Physical Properties of Finished Leathers research paper, should only be used as a guide.